

Optimal Tiled QR Factorization

Jeffrey Larson KTH Automatic Control Group JANUARY 8, 2014

Motivation

- The current computer architecture has moved towards the multi/many-core structure.
- However, the algorithms in the current sequential dense numerical linear algebra libraries (e.g. LAPACK) do not parallelize/scale well on multi/many-core architectures.
- A new family of algorithms, the *tiled algorithms*, has recently been introduced to circumvent this problem.

Tiled algorithms seek to alleviate these by

- using asynchronous scheduling of tasks to remove synchronization points
- breaking up the larger tasks to allow for fine-grained parallelism
- enabling better (optimal) memory-to-computation ratio ("communication avoiding")

Reordering the data of the matrix into smaller regions of contiguous memory enables having the data layout match the algorithm.

Thus an $n \times n$ matrix is made up t tiles of size $n_b \times \overline{n_b}$ so that $n = t \cdot n_b$. The tile size becomes a tuning parameter and can depend upon the machine as well as the algorithm.

A QR factorization of a rectangular matrix A is a decomposition of A as

$$A = QR$$

where Q is a unitary matrix (i.e. $Q^TQ = I$) and R is an upper triangular matrix. If A is nonsingular, then this factorization is unique when R is required to have positive diagonal entries.

A QR factorization of a rectangular matrix A is a decomposition of A as

$$A = QR$$

where Q is a unitary matrix (i.e. $Q^TQ = I$) and R is an upper triangular matrix. If A is nonsingular, then this factorization is unique when R is required to have positive diagonal entries.

MATLAB uses this to solve

$$Ax = b$$

A QR factorization of a rectangular matrix A is a decomposition of A as

$$A = QR$$

where Q is a unitary matrix (i.e. $Q^TQ = I$) and R is an upper triangular matrix. If A is nonsingular, then this factorization is unique when R is required to have positive diagonal entries.

MATLAB uses this to solve

$$Ax = b$$

$$QRx = b \implies Rx = Q^T b$$

Solve this using back substitution.

Goal

Goal

Tools

code name weight

GEQRT

4

TTQRT

2

Updates

UNMQR 6

Rules

- Every tile below the diagonal must become a zero.
- Every tile on the diagonal must become a triangle.
- Every triangularization or zeroing requires an update.
- Updates must be applied in order.
- Only a triangle can zero another triangle.
- Before triangularizing, tiles to the left must be zeros.

Update after triangularization

$$w_{ikl} = t \in [0, T]$$
: if we finish the update of tile (i, k) at time t (This update was necessitated by $x_{il} = s : l < k, s < t$).

Triangularization

$$x_{ik} = t \in [0, T]$$
: if we complete triangularization of tile (i, k) at time t

Update after zeroing

$$y_{ijkl} = t \in [0, T]$$
: if we finish the update of tiles (i, k) and (j, k) at t (This update was necessitated by $z_{ijl} = s : l < k, s < t$)

Zeroing

$$z_{ijk} = t \in [0, T]$$
: if we complete zeroing tile (i, k) using tile (j, k) at t

Example Constraints

After a tile is triangularized, updates must occur in the next columns.

$$x_{ik} \le w_{ilk} - 3$$
 $\forall i, k < q, i \ge k, l > k$

J Larson

After a tile is triangularized, updates must occur in the next columns.

$$x_{ik} \le w_{ilk} - 3$$
 $\forall i, k < q, i \ge k, l > k$

Tiles strictly below the diagonal must be zeroed at some point.

$$\sum_{j} \hat{z}_{ijk} = 1 \qquad \forall i > k$$

After a tile is triangularized, updates must occur in the next columns.

$$x_{ik} \le w_{ilk} - 3$$
 $\forall i, k < q, i \ge k, l > k$

Tiles strictly below the diagonal must be zeroed at some point.

$$\sum_{i} \hat{z}_{ijk} = 1 \qquad \forall i > k$$

After a tile (i, k) is zeroed, we can't use it to zero.

$$z_{ijk} \geq z_{hik} \quad \forall h, i, j, k$$

Known Results

- Greedy is not optimal!
- If the number of processors is unlimited, then an optimal procedure is known.
- If the number of processors is limited, then the optimal routine is not known.

If the matrix is divided into 6 rows and 3 columns of tiles, and 6 processors are available, the optimal schedule is better than any known method. Also, the zeroing pattern does not match any known algorithms for Tiled QR.

1	2	3	
*			
1	*		
1	2	*	
1	2	3	
1	2	3	
2	4	4	
	1 1 1 1 1 2		

	1	2	3	
1	*			
1 2 3 4 5 6	1	*		
3	1	2	*	
4	1	2	3	
5	1	2	3	
6	1	2	3	

	1	2	3
1	*		
2	1	*	
3	2	2	*
4	1	3	3
5	2	3	4
6	3	4	5

(a) Optimal

(b) Flat Tree

(c) Greedy

So where is this useful?

• Solving the IP model takes quite a bit of time.

So where is this useful?

- Solving the IP model takes quite a bit of time.
- We have a collection of matrices where optimal is better than any existing method.
- For example: the optimal for $6\times 3-6$ takes 7% less time than any known method.

So where is this useful?

- Solving the IP model takes quite a bit of time.
- We have a collection of matrices where optimal is better than any existing method.
- For example: the optimal for $6 \times 3 6$ takes 7% less time than any known method.
- Many image processing examples involve repeatedly factoring matrices that are the same size.

Conclusion

Why does this matter?